Machines Gone Wild! + Can Microlearning improve Data Science training?
boston-dynamics-spot-mini

  1. Machines Gone Wild → Digital trust gap Last year I spoke with the CEO of a smallish healthcare firm. He had not embraced sophisticated analytics or machine-made decision making, with no comfort level for ‘what information he could believe’. He did, however, trust the CFO’s recommendations. Evidently, these sentiments are widely shared. — […]

Read more
Analytics translators wanted, algorithm vs. human, and winning with diversity.
data translators

1. Hire analytics translators → Keep data scientists happy An emerging role – what some call the Analytics Translator – is offloading burden from data scientists, while helping business executives get better value from their technology investments. A recent HBR piece explains You Don’t Have to Be a Data Scientist to Fill This Must-Have Analytics […]

Read more
Cognitive bias in algorithms, baseball analytics denied, and soft skills ROI.
mexico-analytics-baseball-nytimes

1. Recognize bias → Create better algorithms Can we humans better recognize our biases before we turn the machines loose, fully automating them? Here’s a sample of recent caveats about decision-making fails: While improving some lives, we’re making others worse. Yikes. From HBR, Hiring algorithms are not neutral. If you set up your resume-screening algorithm […]

Read more
Scroll Up