The skill set for explaining, XAI, and why they both matter.

As data complexity grows, so does the importance of explaining. The philosophy of science can teach us about the role of explaining in high-quality, evidence-based decisions. It’s not just navel-gazing: An explanation is a statement that makes something clear, or a reason or justification given for an action or belief. It describes “a set of […]

Read more
Machines Gone Wild! + Can Microlearning improve Data Science training?
boston-dynamics-spot-mini

  1. Machines Gone Wild → Digital trust gap Last year I spoke with the CEO of a smallish healthcare firm. He had not embraced sophisticated analytics or machine-made decision making, with no comfort level for ‘what information he could believe’. He did, however, trust the CFO’s recommendations. Evidently, these sentiments are widely shared. — […]

Read more
Analytics translators wanted, algorithm vs. human, and winning with diversity.
data translators

1. Hire analytics translators → Keep data scientists happy An emerging role – what some call the Analytics Translator – is offloading burden from data scientists, while helping business executives get better value from their technology investments. A recent HBR piece explains You Don’t Have to Be a Data Scientist to Fill This Must-Have Analytics […]

Read more
Cognitive bias in algorithms, baseball analytics denied, and soft skills ROI.
mexico-analytics-baseball-nytimes

1. Recognize bias → Create better algorithms Can we humans better recognize our biases before we turn the machines loose, fully automating them? Here’s a sample of recent caveats about decision-making fails: While improving some lives, we’re making others worse. Yikes. From HBR, Hiring algorithms are not neutral. If you set up your resume-screening algorithm […]

Read more
Scroll Up